Gli1-Mediated Regulation of Sox2 Facilitates Self-Renewal of Stem-Like Cells and Confers Resistance to EGFR Inhibitors in Non–Small Cell Lung Cancer1
نویسندگان
چکیده
Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations.
منابع مشابه
DDX53 Promotes Cancer Stem Cell-Like Properties and Autophagy
Although cancer/testis antigen DDX53 confers anti-cancer drug-resistance, the effect of DDX53 on cancer stem cell-like properties and autophagy remains unknown. MDA-MB-231 (CD133+) cells showed higher expression of DDX53, SOX-2, NANOG and MDR1 than MDA-MB-231 (CD133-). DDX53 increased in vitro self-renewal activity of MCF-7 while decreasing expression of DDX53 by siRNA lowered in vitro self-ren...
متن کاملCathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression.
Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at ...
متن کاملHypoxia Increases Gefitinib-Resistant Lung Cancer Stem Cells through the Activation of Insulin-Like Growth Factor 1 Receptor
Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating ep...
متن کاملDDX3X Induces Primary EGFR-TKI Resistance Based on Intratumor Heterogeneity in Lung Cancer Cells Harboring EGFR-Activating Mutations
The specific mechanisms how lung cancer cells harboring epidermal growth factor receptor (EGFR) activating mutations can survive treatment with EGFR-tyrosine kinase inhibitors (TKIs) until they eventually acquire treatment-resistance genetic mutations are unclear. The phenotypic diversity of cancer cells caused by genetic or epigenetic alterations (intratumor heterogeneity) confers treatment fa...
متن کاملDeregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance
Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...
متن کامل